Mechanisms of Action

MDMA is a triple monoamine reuptake inhibitor which effectively means that it prevents the reuptake of the three monoamine neurotransmitters which are serotonin, norepinephrine, and dopamine.

Other medicines which fall in the triple monoamine reuptake inhibitor category have been shown to have strong antidepressant activity and favourable safety profiles in existing clinical research (Marks et al., 2008; Millan, 2009).

Video: 2-Minute Neuroscience: MDMA

2:00

In this video, we’ll learn how MDMA is believed to affect the brain and rest of the body.

While most of MDMA’s effects are connected to its reuptake inhibition of norepinephrine, dopamine, and especially serotonin, it also plays an unknown role in relation to acetylcholine and histamine receptors (Bonkale & Austin, 2008; Fitzgerald & Reid, 1990; Hysek et al., 2014; Kalant, 2001; Kankaanpää et al., 1998; Rudnick & Wall, 1992; Schenk et al., 2013; Verrico et al., 2007; Vollenweider et al., 2002).

Additionally, MDMA is known to reversibly inhibit a synaptic process that prevents the production and release of additional serotonin (Adori et al., 2011; Bonkale & Austin, 2008; Hysek et al., 2014; Schenk et al., 2013). These effects on serotonin are what differentiate it from amphetamine and methamphetamine, which primarily act on dopamine and norepinephrine (Han & Gu, 2006; Rudnick & Wall, 1992).

Brain Activity

The majority of the effects caused by MDMA can be attributed to the inhibition of serotonin reuptake. Dopamine and norepinephrine raise levels of arousal, awareness, and openness and reduce levels of fear (Sessa et al., 2019). Furthermore, some of MDMA’s effects may be linked to MDMA's capacity to reduce amygdala activity, as amygdala stimulation in animal models has previously been shown to be associated with states of conditioned fear which resemble PTSD in humans. Reducing activation of the amygdala may also serve to enhance interaction with the health professionals during MDMA-assisted therapy because it triggers the release of oxytocin which is associated with dampening of the amygdala stress response and an increase in empathy and closeness (Sessa et al., 2019; Davis & Shi, 1999; Rasmusson & Charney, 1997). MDMA also increases blood flow to the prefrontal cortex as well as increases blood levels of arginine vasopressin (Bedi et al., 2009; Carhart-Harris et al., 2015; Dumont et al., 2009; Fallon et al., 2002; Gamma et al., 2000; Hysek et al., 2012; Hysek et al., 2014; Kirkpatrick, Francis, et al., 2014; Wolff et al., 2006).

References

Adori, C., Andó, R. D., Szekeres, M., Gutknecht, L., Kovács, G. G., Hunyady, L., . . . Bagdy, G. (2011). Recovery and aging of serotonergic fibers after single and intermittent MDMA treatment in Dark Agouti rat. J Comp Neurol, 519(12), 2353-2378. https://doi.org/10.1002/cne.22631

Bedi, G., Phan, K. L., Angstadt, M., & de Wit, H. (2009). Effects of MDMA on sociability and neural response to social threat and social reward. Psychopharmacology (Berl), 207(1), 73-83. https://doi.org/10.1007/s00213-009-1635-z

Bonkale, W. L., & Austin, M. C. (2008). 3,4-Methylenedioxymethamphetamine induces differential regulation of tryptophan hydroxylase 2 protein and mRNA levels in the rat dorsal raphe nucleus. Neuroscience, 155(1), 270-276. https://doi.org/10.1016/j.neuroscience.2008.03.086

Carhart-Harris, R. L., Murphy, K., Leech, R., Erritzoe, D., Wall, M. B., Ferguson, B., . . . Nutt, D. J. (2015). The Effects of Acutely Administered 3,4-Methylenedioxymethamphetamine on Spontaneous Brain Function in Healthy Volunteers Measured with Arterial Spin Labeling and Blood Oxygen Level- Dependent Resting State Functional Connectivity. Biol Psychiatry, 78(8), 554-562. https://doi.org/10.1016/j.biopsych.2013.12.015

Davis, M., & Shi, C. (1999). The extended amygdala: are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety? Ann N Y Acad Sci, 877, 281-291. https://doi.org/10.1111/j.1749-6632.1999.tb09273.x

Dumont, G. J., Sweep, F. C., van der Steen, R., Hermsen, R., Donders, A. R., Touw, D. J., . . . Verkes, R. J. (2009). Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4- methylenedioxymethamphetamine) administration. Soc Neurosci, 4(4), 359-366. https://doi.org/10.1080/17470910802649470

Fallon, J. K., Shah, D., Kicman, A. T., Hutt, A. J., Henry, J. A., Cowan, D. A., & Forsling, M. (2002). Action of MDMA (ecstasy) and its metabolites on arginine vasopressin release. Ann N Y Acad Sci, 965, 399-409. https://doi.org/10.1111/j.1749-6632.2002.tb04181.x

Fitzgerald, J. L., & Reid, J. J. (1990). Effects of methylenedioxymethamphetamine on the release of monoamines from rat brain slices. Eur J Pharmacol, 191(2), 217-220. https://doi.org/10.1016/0014-2999(90)94150-v

Gamma, A., Buck, A., Berthold, T., Liechti, M. E., Vollenweider, F. X., & Hell, D. (2000). 3,4- Methylenedioxymethamphetamine (MDMA) modulates cortical and limbic brain activity as measured by [H(2)(15)O]-PET in healthy humans. Neuropsychopharmacology, 23(4), 388-395. https://doi.org/10.1016/S0893-133X(00)00130-5

Han, D. D., & Gu, H. H. (2006). Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol, 6, 6. https://doi.org/10.1186/1471- 2210-6-6

Hysek, C. M., Domes, G., & Liechti, M. E. (2012). MDMA enhances "mind reading" of positive emotions and impairs "mind reading" of negative emotions. Psychopharmacology (Berl), 222(2), 293-302. https://doi.org/10.1007/s00213-012-2645-9

Hysek, C. M., Schmid, Y., Simmler, L. D., Domes, G., Heinrichs, M., Eisenegger, C., . . . Liechti, M. E. (2014). MDMA enhances emotional empathy and prosocial behavior. Soc Cogn Affect Neurosci, 9(11), 1645-1652. https://doi.org/10.1093/scan/nst161

Kalant, H. (2001). The pharmacology and toxicology of "ecstasy" (MDMA) and related drugs. CMAJ, 165(7), 917-928.

Kankaanpää, A., Meririnne, E., Lillsunde, P., & Seppälä, T. (1998). The acute effects of amphetamine derivatives on extracellular serotonin and dopamine levels in rat nucleus accumbens. Pharmacol Biochem Behav, 59(4), 1003-1009. https://doi.org/10.1016/s0091-3057(97)00527-3

Kirkpatrick, M. G., Francis, S. M., Lee, R., de Wit, H., & Jacob, S. (2014). Plasma oxytocin concentrations following MDMA or intranasal oxytocin in humans. Psychoneuroendocrinology, 46, 23-31. https://doi.org/10.1016/j.psyneuen.2014.04.006

Marks, D. M., Pae, C. U., & Patkar, A. A. (2008). Triple reuptake inhibitors: a premise and promise. Psychiatry Investig, 5(3), 142-147. https://doi.org/10.4306/pi.2008.5.3.142

Millan, M. J. (2009). Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics, 6(1), 53-77. https://doi.org/10.1016/j.nurt.2008.10.039

Rasmusson, A. M., & Charney, D. S. (1997). Animal models of relevance to PTSD. Ann N Y Acad Sci, 821, 332-351. https://doi.org/10.1111/j.1749-6632.1997.tb48290.x

Rudnick, G., & Wall, S. C. (1992). The molecular mechanism of "ecstasy" [3,4-methylenedioxy- methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc Natl Acad Sci U S A, 89(5), 1817-1821. https://doi.org/10.1073/pnas.89.5.1817

Schenk, S., Abraham, B., Aronsen, D., Colussi-Mas, J., & Do, J. (2013). Effects of repeated exposure to MDMA on 5HT1a autoreceptor function: behavioral and neurochemical responses to 8-OHDPAT. Psychopharmacology (Berl), 227(2), 355-361. https://doi.org/10.1007/s00213-013-2980-5

Sessa, B., Higbed, L., & Nutt, D. (2019). A Review of 3,4-methylenedioxymethamphetamine (MDMA)-Assisted Psychotherapy. Frontiers in Psychiatry, 10(138), https://www.frontiersin.org/articles/10.3389/fpsyt.2019.00138/full

Verrico, C. D., Miller, G. M., & Madras, B. K. (2007). MDMA (Ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology (Berl), 189(4), 489-503. https://doi.org/10.1007/s00213-005- 0174-5

Vollenweider, F. X., Liechti, M. E., Gamma, A., Greer, G., & Geyer, M. (2002). Acute psychological and neurophysiological effects of MDMA in humans. J Psychoactive Drugs, 34(2), 171-184. https://doi.org/10.1080/02791072.2002.10399951

Wolff, K., Tsapakis, E. M., Winstock, A. R., Hartley, D., Holt, D., Forsling, M. L., & Aitchison, K. J. (2006). Vasopressin and oxytocin secretion in response to the consumption of ecstasy in a clubbing population. J Psychopharmacol, 20(3), 400-410. https://doi.org/10.1177/0269881106061514